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Stable three-dimensional spatiotemporal solitons in a two-dimensional photonic lattice
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We investigate the existence and stability of three-dimensional spatiotemporal solitons in self-focusing cubic
Kerr-type optical media with an imprinted two-dimensional harmonic transverse modulation of the refractive
index. We demonstrate that two-dimensional photonic Kerr-type nonlinear lattices can support stable one-
parameter families of three-dimensional spatiotemporal solitons provided that their energy is within a certain
interval and the strength of the lattice potential, which is proportional to the refractive index modulation depth,
is above a certain threshold value.
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Spatiotemporal soliton€STS’9 in optical media have at- 0 1(#q dq\ ddq 5
tracted much attention in the last several ye@se, e.g., I&_§:_§ 6_772+a_g2 +§;+UQ|Q|
[1,2]). ASTS, sometimes referred to as a “light bullgg], is
a nondiffracting and nondispersing wave packet propagating = pcogQ,m)cod Q). (1)

in suitable optically nonlinear material. It retains its shape Here one assumes that the linear susceptibility depends on
and is guided along the propagation direction by virtue of a&ne transverse coordinatesand, which finally leads to the
balance among diffraction, group-velocity dispersion, andappearance of the linear term proportional to the modulation
nonlinear self-phase modulation. Solitaies, more properly, parametep (see, e.g.j22] and[23] for the normalization of
solitary wavegin Kerr-type focusing media are described by the physical quantitigs 7 is the time coordinate, and the
the cubic nonlinear SchrodingédLS) equation and they are parameterd equals the ratio of diffraction length to disper-
known to be unstable in two and three dimensions because afon length. We consider the case aiomaloustemporal

2

2
+ +

the occurrence of the collapse of the wave packee, e.g., dispersion and we take=-1 because we can always rescale
the review[4]). Various schemes to arrest the collapse werghe time coordinate to get this value. The parametdefines
proposed such as the use of weaker satuf@ler quadratic ~ the sign of the nonlinearity, and we consider the case of
nonlinearitie§6-9], or to use the concept of nonlinearity and self-focusing nonlinearitfo=-1). The parametep is pro-
group-velocity dispersionGVD) management in tandem portional to the refractive index modulation depth. We con-
structures, which are composed of periodically alternatingsider equal modulation frequencies,=(),=27/T, whereT
linear dispersive and quadratically nonlinear laygt§]. IS the modulation period. Equatiqd) conserves the energy
Other recent approaches use off-resonance two-level systerﬁs“”ﬂqwig’T)|2d’7d§d7’ and the Hamiltonian
[11], self-induced-transparency medit2], inhomogeneous, 2
dispersive nonlinear mediéor example, a graded index :J JJ [}< A X « )

p ple, a g H
Kerr medium[13]), or small negative fourth-order GVD to 2\ dn g it
arrest the spatiotemporal collapg®4] (this scheme works 1 )
only in two dimensions, that is, in a planar waveguide with - §|Q| - pcodQ,ncodQ)|gf* [dpdZdr.  (2)
pure Kerr nonlinearity However, a very promising way to
arrest the collapse in Kerr-type focusing media is to use two- We search for stationary soliton profiles in the form
dimensional(2D) nonlinear photonic lattice§15-19 in a  a(7.{,7,&€)=wW(»,, nexplibé), wherew is a real function
three-dimensional3D) environment. The study of coherent andb is the nonlinear wave number shift. The lattice soliton
wave propagation in lattice systertigcluding soliton phe- families are defined by the propagation constanmodula-
nomena in nonlinear periodic structuyegnerated in recent tion periodT, and the guiding parameter Since the scaling
years intense activity both in opti¢®r a recent comprehen- transformationq’ (#,¢, 7, &,p)=xd(x 7, x{, X7, x?€, x*p) can
sive review, sed20]) and in the field of matter waves in be used to obtain various families of lattice solitons from a
optical trapping potentialg21]. given one, we selected the transverse scale in such a way

It is the aim of this work to study the existence and sta-that the modulation period=/2 and we varied and p
bility of the families of 3D spatiotemporal solitons trapped in [22]. The resulting equation was solved by using the imagi-
a 2D Kerr-type nonlinear photonic lattice. The basic dimen-nary time propagation methadee, e.g.[24]). We have used
sionless evolution equation for 3D light propagation in a 2Da standard Crank-Nicholson finite difference scheme. The
photonic lattice is nonlinear finite-difference equations were solved by means
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FIG. 1. (a) The wave numbeb vs energyE. (b) The temporal FIG. 2. (a) The HamiltoniarH of the 3D solitons vs their energy

(wr) and spatiallwg) widths vs soliton’s amplitudé\. Solid lines  E for p#0. (b) The H=H(E) plot for the casep=0. Solid lines
show stable solitons whereas dashed lines show unstable ones. dhow stable solitons, whereas dashed lines show unstable ones.
(b) only the stable branches were plotted.
potential[see the full lines in Fig. (B) for lattice strengths

of the Picard iteration method and the resulting linear systenp=15 andp=20]. For the sake of comparison we plotted also
was handled with the help of the Gauss-Seidel iterativen Fig. 1(a) and Fig. 2b) the dependencels=b(E) and H
procedure. To achieve good convergence, we needed typi-(E), respectively, for the unstable solitons corresponding
cally, six Picard iterations and six Gauss-Seidel iterationsyg the 3D NLS equatiofip=0). Remarkably, for sufficiently
We have employed equal transverse grid step size87 5196 values of the lattice strength parameter the
=Af=Ar. Typical values of the transverse step sizes anqyamiltonian-versus-energy curves plotted in Figa)2dis-
longitudinal step sizes are=0.008 andAé=0.00006 for 4y two cuspsinstead of a single one as in other 2D and 3D
high amphtude solitons. For low amplitude solitons we smiltonian systemésee, e.g., Ref2] for several examples
take typically h=0.05 andA£=0.002. We have used 401 qfhe ysefulness of the Hamiltonian-versus-energy diagrams
points in each transverse direction and the stabilization prog, the analysis of the existence and stability of solitons in
cess occurs after 410°~1x 10" steps along the propaga- ¢onservative systemsThis feature is intimately connected
tion direction. _ _ _ _ to the existence of stable 3D solitons within a finite interval

By a direct manipulation of the evolution equatid) we o their energies. This two-cusp structure is the so-called
get the following relathnsh|p betvyeen the total englEgyhe “swallow tail” catastrophe and is quite rare in physiésr a
wave numbelb, the stationary profilev, and the Hamiltonian  eview on catastrophe theory as applied to the soliton stabil-
H: H:‘b|5_+§fff""4d77d§d7'- This relationship may be used iy see, e.g.[25]). Notice that a multivalueti=H(E) curve
to determine the wave numbé once knowing the field \yith two cusps was encountered also in the case of one- and
profile w. Notlce that for the _statlonary solitons of the 3D yo-dimensional type-Il quadratic solitofig6]; however, in
NLS equation[that is, the limitp=0 in Eq.(1)] the corre-  hat case for a given energy there exist two stable solitons
sponding relagonshlps betweE?H, and the wave numb& 5 one unstable one; a situation different from that pre-
are b(E)=CE* and H(E)=CE~, whereC=44.3 is a NU-  gented in Fig. @). We mention that only the soliton families
merical constan(see, e.g.[1,2]). We mention that we have \hich meet the Vakhitov-Kolokolov criteriordE/db>0
additionally cross-checked our imaginary time propagationyere expected to be linearly stable. We have checked by
code on the 3D NLS equation and we have tested the validityjrect propagation that this is the case: the two semi-infinite
of the above relationships 'between the wave nunibéhe  pranches corresponding =15 andp=20 [see the dashed
energyE, and the HamiltoniarH. _ lines in Figs. 1a) and 2a)] correspond to unstable STS's,

In Fig. 1 we plot the dependente=b(E) [Fig. Xa@)] and  \yhereas the finite branchésee the solid lines in Figs(d)
the spatialws) and tempora(wy) widths vs soliton's ampli-  and 2a)] correspond to stable STS’s. Thus in sharp contrast
tude A [Fig. 1(b)] for the one-parameter family of 3D sta- to 2D spatial solitons that become stable over certain thresh-
tionary solutions. We see that the 3D solitons are isotropic irbld propagation constar,, at any lattice deptip>0 [23],
the two confining directiongin the plane(,{)] and are the 3D solitons supported by 2D lattices can be stable only
elongated in the time coordinate for low soliton’s ampli-  when the lattice depttp exceeds a certain critical value.
tudes the corresponding temporal width is more than two  Moreover, in contrast to spatial solitons that are stable in a
times larger than the associated spatial widih[see Fig.  semiinfinite domainb> by, the STS's can be stable in a
1(b)]. As a consequence of the imprinted 2D photonic latticeJimited interval of propagation constants that grows with an
the nonlinear localized states exist only for wave numibers increase of lattice depth. Thus, the inclusion of the anoma-
larger than some minimum valuds,,(p) (the edge of the |ous temporal dispersion makes it harder to stabilize the 3D
band gap This minimum propagation constant increasessolitons(especially narrow ongs
with the increase of the lattice strength parametéfor the Figures 3a) and 3b) illustrate the shape of a typical
NLS equation(p=0) we haveb,,,=0]. Families of 3D soli- low amplitude stable 3D lattice soliton whose wave
tons in a 2D lattice exist whenever their energy exceeds aumber is close to the band edge. In this case the soliton
certain minimum value and are linearly stable in thespreads to several lattice sites; moreover, this low amplitude
intermediate-energy regime and for sufficiently high latticesoliton has an elongated shape along the time coordinate,
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FIG. 3. Cross sections at0 (a) and(c) and£=0 (b) and(d) of FIG. 4. Cross sections at=0 of two solitons corrte_sponding
stable 3D solitons fop=20. In (a) and (b) the peak amplitudes 0 the same energi=2.2 and forp=15. () Input white-noise
=2.4, the energfE=1.6, and the wave numbbr5.965, whereas in perturbed soliton(b) the self-cleaned stable soliton &t20, (c)

(c) and(d) A=6, E=2.17, ancb=10.702 input high amplitude unstable soliton, afd) the unstable soliton

' o o at £=2.
in accordance with the amplitude-width dependence plotted
in Fig. 1(b). A typical high amplitude single-peaked soli- nonlinearly stableFor the linearly unstable solitons we have
ton which occupies a single lattice cell is shown in Figg) 3 jdentified two different instability scenarios: they either de-
and 3d) for the same value of the lattice strength param-cay into linear Bloch waves under white-noise perturbations

eterp.but for a higher value of thg energy and o_f th(_a Pro-[see Figs. &) and 4d) and 5c) and %d) for a typical situ-
pagation constannear the other side of the stability inter- aiior or they collapse if the soliton is perturbed by a strong
val). Thus the temporal and spatial widths of high amplitude,,icorm perturbation with the strengér0.1. However, the

3D lattice solitons are quite close to each otfigee Fig.  qapse is not encountered in the case of spatial solitons

L. . . h i qi supported by 2D lattices: the 2D solitons transform into ei-
An important issue for these 3D solitons trapped in a 2D jinear Bloch waves or into narrower solitons belonging
photonic lattice is the occurrence of collapse. We expecl, ihe stable brancfe3].

that the solitons corresponding to the stable brandkes
the solid lines in Figs. () and 2a)] are able to withstand
small perturbations without collapse, whereas linearly un-
stable solitons either collapse or spread into linear Bloch
waves, depending on the type and strength of the per
turbation. In order to confirm these expectations we nonlin-
early evolved the stationary solitons under small perturba-
tion, taking the initial condition of the formq(¢=0)
=w(7,{,7)(1+ep), wheree is a small quantity ang can be )
taken either as an uniformly distributed random number in
the interval[-0.5,0.9 or asp=1 (uniform perturbation We

have checked that the solitons on the stable interval of the
nonlinear dispersion curvisee the solid lines in Fig.(&)] 10
are stable against white-noise perturbatipsse Figs. én)

and 4b) and %a) and %b)] for an example of a linearly
stable soliton which resisted an input noise with0.05. We 5
have checked that the soliton’s amplitude, its temporal and
spatial widths oscillate slightly, and no collapse or breakup is
observed during propagation. We have also studied the non
linear evolution process under the second type of perturba
tion when we simply takep=1. In this case when the
strength of the perturbation is very sm@dlis of the order of
0.01), the perturbed soliton slightly oscillates around its FIG. 5. The same as in Fig. 4, but for the cross sections at
stable state, meaning that the linearly stable solitons are alse=0.

We note that our results concerning the existence and sta-
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bility of the one-parameter family of multidimensional soli- lattice), whereas the stable high-ener@mplitudg solitons
tons in a low-dimensional photonic lattice might be usefulhave a single-cell structure, being largely confined to only
for other branches of physics, such as the nonlinear dynanone lattice site. The three-dimensional solitons undergo
ics of a Bose-Einstein condensate loaded in an optical latticabrupt delocalization as the strength of the two-dimensional
[19,27-32. photonic lattice is decreased below some critical value,
In conclusion, we have found one parameter families olyhereas for sufficiently high lattice strengths, they are both

three-dimensional spatiotemporal solitons in a confininginearly and nonlinearly stable in a finite interval of their
two-dimensional Kerr-type photonic lattice. The stable |°W'energies.

energy(amplitudg solitons whose propagation constants are
close to the band edge have a composite multicell structure Support from Instituci6 Catalana de Recerca i Estudis
(that is, the soliton is composed of a central peak with symAvancats(ICREA), Barcelona, and Deutsche Forschungsge-

metrically spaced satellites in neighboring cells of the opticaimeinschaftfDFG), Bonn, is acknowledged.
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