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We investigate the existence and stability of three-dimensional spatiotemporal solitons in self-focusing cubic
Kerr-type optical media with an imprinted two-dimensional harmonic transverse modulation of the refractive
index. We demonstrate that two-dimensional photonic Kerr-type nonlinear lattices can support stable one-
parameter families of three-dimensional spatiotemporal solitons provided that their energy is within a certain
interval and the strength of the lattice potential, which is proportional to the refractive index modulation depth,
is above a certain threshold value.
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Spatiotemporal solitons(STS’s) in optical media have at-
tracted much attention in the last several years(see, e.g.,
[1,2]). A STS, sometimes referred to as a “light bullet”[3], is
a nondiffracting and nondispersing wave packet propagating
in suitable optically nonlinear material. It retains its shape
and is guided along the propagation direction by virtue of a
balance among diffraction, group-velocity dispersion, and
nonlinear self-phase modulation. Solitons(or, more properly,
solitary waves) in Kerr-type focusing media are described by
the cubic nonlinear Schrödinger(NLS) equation and they are
known to be unstable in two and three dimensions because of
the occurrence of the collapse of the wave packet(see, e.g.,
the review[4]). Various schemes to arrest the collapse were
proposed such as the use of weaker saturable[5] or quadratic
nonlinearities[6–9], or to use the concept of nonlinearity and
group-velocity dispersion(GVD) management in tandem
structures, which are composed of periodically alternating
linear dispersive and quadratically nonlinear layers[10].
Other recent approaches use off-resonance two-level systems
[11], self-induced-transparency media[12], inhomogeneous,
dispersive nonlinear media(for example, a graded index
Kerr medium[13]), or small negative fourth-order GVD to
arrest the spatiotemporal collapse[14] (this scheme works
only in two dimensions, that is, in a planar waveguide with
pure Kerr nonlinearity). However, a very promising way to
arrest the collapse in Kerr-type focusing media is to use two-
dimensional(2D) nonlinear photonic lattices[15–19] in a
three-dimensional(3D) environment. The study of coherent
wave propagation in lattice systems(including soliton phe-
nomena in nonlinear periodic structures) generated in recent
years intense activity both in optics(for a recent comprehen-
sive review, see[20]) and in the field of matter waves in
optical trapping potentials[21].

It is the aim of this work to study the existence and sta-
bility of the families of 3D spatiotemporal solitons trapped in
a 2D Kerr-type nonlinear photonic lattice. The basic dimen-
sionless evolution equation for 3D light propagation in a 2D
photonic lattice is
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Here one assumes that the linear susceptibility depends on
the transverse coordinatesh andz, which finally leads to the
appearance of the linear term proportional to the modulation
parameterp (see, e.g.,[22] and[23] for the normalization of
the physical quantities), t is the time coordinate, and the
parameterd equals the ratio of diffraction length to disper-
sion length. We consider the case ofanomaloustemporal
dispersion and we taked=−1 because we can always rescale
the time coordinate to get this value. The parameters defines
the sign of the nonlinearity, and we consider the case of
self-focusing nonlinearityss=−1d. The parameterp is pro-
portional to the refractive index modulation depth. We con-
sider equal modulation frequenciesVh=Vz=2p /T, whereT
is the modulation period. Equation(1) conserves the energy
E=eeeuqsh ,z ,tdu2dhdzdt, and the Hamiltonian
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We search for stationary soliton profiles in the form
qsh ,z ,t ,jd=wsh ,z ,tdexpsibjd, wherew is a real function
andb is the nonlinear wave number shift. The lattice soliton
families are defined by the propagation constantb, modula-
tion periodT, and the guiding parameterp. Since the scaling
transformationq8sh ,z ,t ,j ,pd=xqsxh ,xz ,xt ,x2j ,x2pd can
be used to obtain various families of lattice solitons from a
given one, we selected the transverse scale in such a way
that the modulation periodT=p /2 and we variedb and p
[22]. The resulting equation was solved by using the imagi-
nary time propagation method(see, e.g.,[24]). We have used
a standard Crank-Nicholson finite difference scheme. The
nonlinear finite-difference equations were solved by means
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of the Picard iteration method and the resulting linear system
was handled with the help of the Gauss-Seidel iterative
procedure. To achieve good convergence, we needed typi-
cally, six Picard iterations and six Gauss-Seidel iterations.
We have employed equal transverse grid step sizesh=Dh
=Dz=Dt. Typical values of the transverse step sizes and
longitudinal step sizes areh=0.008 andDj=0.000 06 for
high amplitude solitons. For low amplitude solitons we
take typically h=0.05 andDj=0.002. We have used 401
points in each transverse direction and the stabilization pro-
cess occurs after 43103–13104 steps along the propaga-
tion direction.

By a direct manipulation of the evolution equation(1) we
get the following relationship between the total energyE, the
wave numberb, the stationary profilew, and the Hamiltonian
H: H=−bE+ 1

2 eeew4dhdzdt. This relationship may be used
to determine the wave numberb, once knowing the field
profile w. Notice that for the stationary solitons of the 3D
NLS equation[that is, the limitp=0 in Eq. (1)] the corre-
sponding relationships betweenE, H, and the wave numberb
are bsEd=CE−2 and HsEd=CE−1, where C.44.3 is a nu-
merical constant(see, e.g.,[1,2]). We mention that we have
additionally cross-checked our imaginary time propagation
code on the 3D NLS equation and we have tested the validity
of the above relationships between the wave numberb, the
energyE, and the HamiltonianH.

In Fig. 1 we plot the dependenceb=bsEd [Fig. 1(a)] and
the spatialswSd and temporalswTd widths vs soliton’s ampli-
tude A [Fig. 1(b)] for the one-parameter family of 3D sta-
tionary solutions. We see that the 3D solitons are isotropic in
the two confining directions[in the planesh ,zd] and are
elongated in the time coordinatet; for low soliton’s ampli-
tudes the corresponding temporal widthwT is more than two
times larger than the associated spatial widthwS [see Fig.
1(b)]. As a consequence of the imprinted 2D photonic lattice,
the nonlinear localized states exist only for wave numbersb
larger than some minimum valuesbminspd (the edge of the
band gap). This minimum propagation constant increases
with the increase of the lattice strength parameterp [for the
NLS equationsp=0d we havebmin=0]. Families of 3D soli-
tons in a 2D lattice exist whenever their energy exceeds a
certain minimum value and are linearly stable in the
intermediate-energy regime and for sufficiently high lattice

potential[see the full lines in Fig. 1(a) for lattice strengths
p=15 andp=20]. For the sake of comparison we plotted also
in Fig. 1(a) and Fig. 2(b) the dependencesb=bsEd and H
=HsEd, respectively, for the unstable solitons corresponding
to the 3D NLS equationsp=0d. Remarkably, for sufficiently
large values of the lattice strength parameterp, the
Hamiltonian-versus-energy curves plotted in Fig. 2(a) dis-
play two cusps, instead of a single one as in other 2D and 3D
Hamiltonian systems(see, e.g., Ref.[2] for several examples
of the usefulness of the Hamiltonian-versus-energy diagrams
in the analysis of the existence and stability of solitons in
conservative systems). This feature is intimately connected
to the existence of stable 3D solitons within a finite interval
of their energies. This two-cusp structure is the so-called
“swallow tail” catastrophe and is quite rare in physics(for a
review on catastrophe theory as applied to the soliton stabil-
ity see, e.g.,[25]). Notice that a multivaluedH=HsEd curve
with two cusps was encountered also in the case of one- and
two-dimensional type-II quadratic solitons[26]; however, in
that case for a given energy there exist two stable solitons
and one unstable one; a situation different from that pre-
sented in Fig. 2(a). We mention that only the soliton families
which meet the Vakhitov-Kolokolov criteriondE/db.0
were expected to be linearly stable. We have checked by
direct propagation that this is the case: the two semi-infinite
branches corresponding top=15 andp=20 [see the dashed
lines in Figs. 1(a) and 2(a)] correspond to unstable STS’s,
whereas the finite branches[see the solid lines in Figs. 1(a)
and 2(a)] correspond to stable STS’s. Thus in sharp contrast
to 2D spatial solitons that become stable over certain thresh-
old propagation constantbcr at any lattice depthp.0 [23],
the 3D solitons supported by 2D lattices can be stable only
when the lattice depthp exceeds a certain critical value.
Moreover, in contrast to spatial solitons that are stable in a
semiinfinite domainb.bcr, the STS’s can be stable in a
limited interval of propagation constants that grows with an
increase of lattice depth. Thus, the inclusion of the anoma-
lous temporal dispersion makes it harder to stabilize the 3D
solitons(especially narrow ones).

Figures 3(a) and 3(b) illustrate the shape of a typical
low amplitude stable 3D lattice soliton whose wave
number is close to the band edge. In this case the soliton
spreads to several lattice sites; moreover, this low amplitude
soliton has an elongated shape along the time coordinate,

FIG. 1. (a) The wave numberb vs energyE. (b) The temporal
swTd and spatialswSd widths vs soliton’s amplitudeA. Solid lines
show stable solitons whereas dashed lines show unstable ones. In
(b) only the stable branches were plotted.

FIG. 2. (a) The HamiltonianH of the 3D solitons vs their energy
E for pÞ0. (b) The H=HsEd plot for the casep=0. Solid lines
show stable solitons, whereas dashed lines show unstable ones.
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in accordance with the amplitude-width dependence plotted
in Fig. 1(b). A typical high amplitude single-peaked soli-
ton which occupies a single lattice cell is shown in Figs. 3(c)
and 3(d) for the same value of the lattice strength param-
eter p but for a higher value of the energy and of the pro-
pagation constant(near the other side of the stability inter-
val). Thus the temporal and spatial widths of high amplitude
3D lattice solitons are quite close to each other[see Fig.
1(b)].

An important issue for these 3D solitons trapped in a 2D
photonic lattice is the occurrence of collapse. We expect
that the solitons corresponding to the stable branches[see
the solid lines in Figs. 1(a) and 2(a)] are able to withstand
small perturbations without collapse, whereas linearly un-
stable solitons either collapse or spread into linear Bloch
waves, depending on the type and strength of the per-
turbation. In order to confirm these expectations we nonlin-
early evolved the stationary solitons under small perturba-
tion, taking the initial condition of the formqsj=0d
=wsh ,z ,tds1+erd, wheree is a small quantity andr can be
taken either as an uniformly distributed random number in
the intervalf−0.5,0.5g or asr=1 (uniform perturbation). We
have checked that the solitons on the stable interval of the
nonlinear dispersion curve[see the solid lines in Fig. 1(a)]
are stable against white-noise perturbations[see Figs. 4(a)
and 4(b) and 5(a) and 5(b)] for an example of a linearly
stable soliton which resisted an input noise withe=0.05. We
have checked that the soliton’s amplitude, its temporal and
spatial widths oscillate slightly, and no collapse or breakup is
observed during propagation. We have also studied the non-
linear evolution process under the second type of perturba-
tion when we simply taker=1. In this case when the
strength of the perturbation is very small(e is of the order of
0.01), the perturbed soliton slightly oscillates around its
stable state, meaning that the linearly stable solitons are also

nonlinearly stable. For the linearly unstable solitons we have
identified two different instability scenarios: they either de-
cay into linear Bloch waves under white-noise perturbations
[see Figs. 4(c) and 4(d) and 5(c) and 5(d) for a typical situ-
ation], or they collapse if the soliton is perturbed by a strong
uniform perturbation with the strengthe=0.1. However, the
collapse is not encountered in the case of spatial solitons
supported by 2D lattices: the 2D solitons transform into ei-
ther linear Bloch waves or into narrower solitons belonging
to the stable branch[23].

We note that our results concerning the existence and sta-

FIG. 3. Cross sections att=0 (a) and(c) andz=0 (b) and(d) of
stable 3D solitons forp=20. In (a) and (b) the peak amplitudeA
=2.4, the energyE=1.6, and the wave numberb=5.965, whereas in
(c) and (d) A=6, E=2.17, andb=10.702.

FIG. 4. Cross sections att=0 of two solitons corresponding
to the same energyE=2.2 and forp=15. (a) Input white-noise
perturbed soliton,(b) the self-cleaned stable soliton atj=20, (c)
input high amplitude unstable soliton, and(d) the unstable soliton
at j=2.

FIG. 5. The same as in Fig. 4, but for the cross sections at
z=0.
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bility of the one-parameter family of multidimensional soli-
tons in a low-dimensional photonic lattice might be useful
for other branches of physics, such as the nonlinear dynam-
ics of a Bose-Einstein condensate loaded in an optical lattice
[19,27–32].

In conclusion, we have found one parameter families of
three-dimensional spatiotemporal solitons in a confining
two-dimensional Kerr-type photonic lattice. The stable low-
energy(amplitude) solitons whose propagation constants are
close to the band edge have a composite multicell structure
(that is, the soliton is composed of a central peak with sym-
metrically spaced satellites in neighboring cells of the optical

lattice), whereas the stable high-energy(amplitude) solitons
have a single-cell structure, being largely confined to only
one lattice site. The three-dimensional solitons undergo
abrupt delocalization as the strength of the two-dimensional
photonic lattice is decreased below some critical value,
whereas for sufficiently high lattice strengths, they are both
linearly and nonlinearly stable in a finite interval of their
energies.
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